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Learning Probability Distributions
with the Contrastive Hebbian Algorithm

J. Rt. Movellan and J. L. McClelland
Department of Psychology
Carnegie Mellon University

Pittsburgh Pa 15213
July 9, 1991version NC-1.3

ABSTRACT

This paper presents a method for training connectionist networks that
adhere to the principles of graded, random, adaptive, and interactive prop-
agation of information (GRAIN). While our analysis has been motivated
by our desire to And a learning algorithm that would work in this envi-
ronment, we have succeeded in implementing a model that encompasses
a large class of previous connectionist algorithms under the same theo-
retica principles and that expands the scope of problems they can learn.
Simulations show examples where GRAIN networks successfully approxi-
mate both discrete and continuous probability distributions, demonstrat-
ing that their scope extends beyond what can be learned by backpropa-
gation networks or standard Boltzmann machines.

1 INTRODUCTION

This paper presents a method for training connectionist networks thit adhere
to the principles of graded, random, adaptive and interactive propagation of
information. These principies have emerged from issues in cognitive modeling
and have been cousolidated as a research program named GRAIN (McClelland,
1990) committed to modelling normal and disordered cognition. Our analysis
has been motivated by our desire to develop a learning algorithm for the GRAIN
environment that would allow learning probability distributions.

Consider a network presented with a sample S of exemplars taken from a
joint probability distribution of input and teacher vectors

S = { (x 1 ,Y0),(X 2 y2),...(x.,y.) ) (1)

where xi = (zi...zi,l) is an input vector, and ys = (yil ... I,o), the corre-
sponding teacher vector. We will refer to the components of a teacher vector as
teacher snits.

One limitation of deterministic networks like standard backpropagation is
that they can only generate a unique output vector for each input rather than



a distribution of output vectors. This unique output vector is usually an es-
timate of the low order statistics (e.g., expected values) of the distribution of
teachers with information about the higher order statistics of this distribution
being omited. Furthermore, the error functions minimized by most learning
algorithms are optimal when the teacher units are statistically independent but
are not so appropriate when interdependencies appear. For instance, minimizing
sum of squares, the error function typically used in backpropagation, converges
to the conditional arithmetic means of each teacher unit and gives optimal re-
sults when the teachers are independent Gaussian variables. In the same fashion,
minimizing cross-entropy, an error measure commonly used when the teachers
are Boolean (0,I) variables, converges to the conditional probabilities of each
teacher unit and is the best when each teacher unit is an independent Bernoulli
random variable.

Omiting the higher order statistics of the distribution of teachers is benefi-
cial when the problem at hand is well modelled by deterministic input-output
functions with added independent noise components. On the other hand, this
higher order information is necessary in other important situations. Consider
for example a simple English to Spanish translation problem where the English
word "olive" has two equally likely translations one of Latin root "oliva" and
one ot Arabic root "aceituna". If we were to use distributed representations
for these words, backpropagation will learn the average representations of the
two acceptable alternatives, a blend which is not acceptable. In cases like this
we want to learn likelihoods of distributed patterns of activation rather than
expected values of individual units.

If we want to learn arbitrary probability distributions, we need an error
function capable of capturing high order statistics, and we also need randomness,
one of the GRAIN principles. Boltzmann machines are intrinsically random,
and their learning algorithm minimizes an error function called information
gain (Ackley et al., 1985) that describes the extent to which the distribution
of patterns of activation produced by the network matches the distribution of
patterns in the environment. Unfortunately, since randomness greatly reduces
learning speed, this property of Boltzmann machines has often been neglected
with more emphasis made to speed them up (e.g., using annealing schedules or
mean field approximations).

What we present here are the results of our efforts to develop a learning algo-
rithm that adheres to the GRAIN principles. We call the algorithm contrastive
Hebbian learning (CHL), a name inspired in the work of Galland and Hinton
(1989) with the deterministic Boltzmann machine. Contrastive Hebbian learn-
ing is a generalization of.the Boltzmann learning algorithm (Ackley et al., 1985)
for the continuous stochastic case and it includes a large variety of previous
connectionist learning algorithms under the same theoretical principles. In this
paper we present a theoretical framework for understanding how the learning
algorithm works, and a series of simulations where GRAIN networks success-
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fully approximate discrete and continuous probability distributions of various
types.

1.1 DETERMINISTIC SKELETON
Let a = [ai,...aff be a real value activatiou column vector. Let W = [wi,
be a real value matrix of connections, where each wi = [wi,,, ...wn,i, is the fan-
in column vector of connections to unit i. The default implementation of GRAIN
uses the update equations of the interactive activation and competition model
(McClelland and Rumelhart, 1981) :

d a, = ), ((ma , - a,) net, - d. (ai - rest)) ; net, > rest, (2)

d a-a A, ((a, - mini) net, - d, (ai - rest,)) ; neti, < relj (3)

where ne, = aTw,, mazi is the maximum activation value for unit i, resti the
activation when the net input is zero, mini the minimum activation value, di
a positive constant named decay which controls the sharpness of the activation
function, and 0 Ai _< 1 a constant which controls the speed of processing. Any
other continuous Hop.-.eld update equation (Hopfield, 1984) would also work'.

If the weight matrix is symmetric the equations implement a version of
the continuous Hopfield model (Hopfield, 1984) with an associated Goodness
function of the following form:

G=H-S (4)

where

H=1aWa (5)2
is the harmony or consistency between the network activations and the weight
constraints. The stress

n
nr ,o,(8)

is a weighted sum of penalty terms, sa, for the activations departing from rest
value

s, = (ma:, - rest,) log ma:. - realj (a - resti); aj2 rest, (7)
(ma:, - aj )

IThe present GRAI implementation also has optimal logistic and hyperbolic tangnt
update functions as defined in (Hopfield, 1984).
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si = (mini - reefi) log (rt-mini + (ai - rest,); Si S rest (8)

The decay parametes,d, weight the relative importance of stress vs. harmony
for each unit, and correspond to the gain parameters if logistic equilibrium
activation functions are used (Hopfield, 1984).

It is easy to show (Movellan, 1990) that these equations implement a ver-
son of the continuous Hopfield model with the activation vector asymptotically
equilibrating at a local maximum of G.

1.2 THE RANDOM COMPONENT

Noise is injected to the deterministic skeleton of GRAIN by introducing a ran-
dom vector Y to the net vector

net = aT W + , (9)

As a default the random vector is made of independent identically distributed
zero mean Gaussian variables:

v,~ N (0,u)I) (10)
where 2 stands for variance at time t. Formally, GRAIN is a Markovian

diffusion process that optimizes the goodness function subject to the constraints
imposed by the random vector.

1.2.1 Stochastic stability

The same way we study for the deterministic skeleton whether the activations
stabilize, we may investigate in the stochastic case whetbh- the probability dis-
tribution of activation states stabilizes over time and whether these stable points
depend on the starting conditions. For simplicity we analyze this aspect by dis-
cretizing time and partitioning the activation states of each unit into m states
over the min-max interval. Let p,(t) be the probability of entering state i of
the m' possible states at the t*h transition given that the initial state is i. It is
easy to show that GRAIN is a regular Markov process, and thus, by applying
the Markovian basic limit theorem (Taylor & Karlim, 1984) it follows that:

(1) there exists a limiting distribution

,j= ,im puj(f) (11)

(2) the distribution is unique and independent of the starting conditions

i = L..n" (12)
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(3) this limiting probability distribution equals the long run proportion of
time that the procem will be in each of the states.

This last aspect which is known as the ergodic property provides great flex-
ibility for employing different strategies to estimate limiting distribution statis-
tics of GRAIN networks.

2 TRAINING: THE CONTRASTIVE THEO-
REM

Training is based on the contrastive theorem, which was analyzed in a previous
paper (Movellan,90) and that we state below.

2.1 Contrastive theorem

Theorem: Let L(P) be a function of the m"' dimensional vector P = ...P"-}.
Consider the following two cases where L is optimized as a function of P : 1) a
(-) case where all the mn P dimensions are free, and 2) a (+) case where some
constraints have been imposed (e.g., some of the values of P are not allowed as
solutions). Let f)(-) be a value of P that achieves !.- ), a maximum of L in the
free case. Let j(+) be a value of P that achieves LW , a maximum of L for the
constrained case. Define the contrastive function CF = L-) - L(+). IF L has
a unique maximum on the (-) case THEN it follows that: 1) CF > 0 , and 2)
CF = 0 ffan only ifij(- ) = f)(+) .

Proof: The set of P points accessible in the constrained (+) case is a subset
of the set of points accesible in the free (-) case. Sii.ce L(-), the maximum in
the (-) case is unique any other L value must be smaller. That is, if i(+) $ j(- )

then L(-) (+) and CF > 0. The only case where (-) = L(W) is when

We will use the contrastive theorem to develop the learning algorithm. P
will represent the probability distributio, of the rn network states. In most
cases we are interested in learning probability distributions conditional on input
unit patterns. Using the same idea as in the Boltzmann machine, in the (-)
case we will clamp the input units and let the rest of the network (hidden and
output units) run free. In the (+) case we will further constrain the network
by also clamping the output units to the environment. The learning algorithm
is based on minimizing the contrastive function by modifying the weight and
the decay parameters. If we get the contrastive function to be zero, then the
probability distribution of the free and clamped cases must be the same and
thus the network has learned.
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2.2 Contrastive learning

Learning is defined as reproducing the probability distribution of the environ-
ment conditional on the input. We conjecture that the equilibrium distribution
of GRAIN is maximizing expected goodness subject to a noise constraint. This
can be expressed in a Lagrange form as

L(W, P) =< G(W,P) > -PN(P) (13)

where P - {Pi...Pm-) is a probability distribution over the m" network states,
<> stands for expected value, N(P) is a function expressing the noise constraint,
and 6 is a Lagrange multiplier. The basic limit Markov theorem guarantees
that the equilibrium distribution is unique. Thus, if our conjecture is true this
distribution is the unique global maximum of L and we can apply the contrastive
theorem on the L function: Define (+) as the case where inputs and outputs are
clamped and (-) the case where only inputs are clamped. Define the contrastive
function as

CF = L(- ) - LM+  (14)

Applying the contrastive theorem it follows that CF is always > 0 and if
CF = 0 the limiting distribution is the same in the (+) case, whe : inputs and
outputs are clamped, as in the (-) case, where only inputs are clamped. Thus if
CF = 0 we have successfully learned the desired probability distributions.

We can perform gradient descent on the contrastive function with respect to
weights and with respect to decays. In order to do so we need the derivatives
of the equilibrium point of L. Using the chain rule we may detompose these
derivatives in two components 2

dL 1L + tOL 8(1dw,-' = ~i Ow, (15)

It is easy to show that the first part of equation 15 is < &ji >. To first
order the second part of equation 15 vanishes because we are at a stable point
of L , where = 0 for all k S. Therefore, to first order

CF "-(--()+)(16)

OW-Wj I i >' ,a

from which the rule for training weights is obtained. We will refer to this rule
as contrastive Hebbian learning.

2A weight can infiuecoe the value of the L maximum by changing the equilibrium prob&-
bility distribution of states and also by changing the goodness value of each state. The left
side of the equation indicates the total derivative where both these influenoes are taken into
consideration. The right side expresse these separate influences as two additive factors.

3 For a similar version of this argument ase (Hinton, 1989), where it is applied to the
deterministic Boltzmarm machine.

6



Similarly, to first order the derivatives for the decay terms are

ICF< >-<si > (17)

Moving in directions opposite to the derivatives we would obtain the appropriate
learning rules.

2.3 Sampling strategies

Since the learning algorithm needs equilibrium distribution statistics, it is im-
portant to get these statistics in a fast and accurate way. One approach is to
use annealing schedules by starting the settling process with a large noise com-
ponent and gradually diminishing it. Another approach is to use sharpening or
mean field annealing where initially large decay values are slowly replaced by
smaller ones. Combinations of sharpening and annealing are also possible. Both
sharpening and annealing schedules are oriented to sampling activation statistics
when the network is visiting the attractor with biggest goodness value. Since the
statistics of this attractor tend to dominate the desired equilibrium distribution,
these procedures save time and in many cases provide accurate statistics. Un-
fortunately, these procedures may also run into problems when the network has
to learn probability distributions where there is more than one equally desirable
pattern of activation for the same input. In this case each of the desired pat-
terns will have a corresponding maximum with the same goodness value. Since
annealing schedules are designed to visit only one of the maxima at a time, the
obtained statistics will be biased and will lead to unstabilities in the learning
process. In such cases, we have found it beneficial to let the network visit several
large attractors by settling several times with different random starting values
before changing the weights. Since the network is ergodic, equilibrium statistics
using one or many restarts converge, but in practice we have found that they
are obtained faster with the multiple restarts method. In our simulations we
use the multiple restarts technique and do not use annealing or sharpening.

3 RELATION TO OTHER MODELS

GRAIN is currently implemented as a continuous Hopfield aetwork with an
added random component. As such, GRAIN is a Markovian diffusion process
similar to that used by Ratcliff (1978) to model reaction time distributions in
human cognition. GRAIN is also a variant of the Gaussian machine developed
by Akiyama et al. to solve optimization problems, but contrary to Ratcliff's
model or to the Gaussian machine, GRAIN can be trained. The name con-
trastive Hebbian learning was inspired by Galland and Hinton's reference to the
contrastive Hebbian synapse in the deterministic Boltzmann machine (Galland
and Hinton, 1989). The contrastive Hebbian learning algorithm for weights was
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first applied by Hopfield to his discrete model but & theoretical ground was
offered at the time (Hopfield el &1., 1983). A mathematical foundation based on
statistical mechanics was given with the discrete stochastic Boltzmann machine
(Ackley et aL, 1985). The algorithm was also derived from statistical mechanics
principles for the continuous deterministic case (Peterson and Anderson, 1987;
Peterson and Hartman, 1989; Hinton, 1989). Movellan (1990) noticed that CHL
could be generalized, without reference to statistical mechanics, to any deter-
ministic continuous Hopfield network by using the contrastive theorem. In this
paper we generalize the learning algorithm for the continuous stochastic case
and propose a rule for training the decay parameters. GRAIN encompasses a
large set of models as special cases. By turning decays to zero, lambdas to 1,
and noise to zero GRAIN becomes the schema model (Rumelhart et al. 1986).
By adding decay terms, GRAIN implements the update equations of the in-
teractive activation and competition (IAC) model (McClelland and Rumelhart,
1981). Both the schemata and the IAC model are versions of the continuous
Hopfield model (Hopfield, 1984). If we add Gaussian noise we get a version of
the Gaussian machine (Akiyama et al.1989). If we use a logistic update function
with large gain, lambdas turned to 1, and asynchronous activation update, the
network approximates the discrete Hopfield model (Hopfield, 1982). If we then
add Gaussian noise, the network approximates a Boltzmann machine (Ackley
ef al., 1985). In all cases the networks can be trained with the same contrastive
learning algorithm.

4 SIMULATIONS

The purpose of the simulations is to investigate whether CHL can be used to
train GRAIN in some standard problems ms well as problems outside the scope
of our current connectionist learning algorithms. In particular we show the re-
suits of the 4 following problems: 1) Standard XOR, 2) Translation problem,
3) Learning Independent Continuous probability distributions, 4) Learning con-
tinuous probability distributions governed by XOR. In all simulations the IAC
update function was used with max = 1.0, min = -1.0, rest= 0.0. The weights
were symmetric, and decays were maintained constant and equal for all units.
Learning was done in epoch mode letting the network settle several times per
pattern with different random starting values and accumulating the statistics
for all the patterns before changing the weights. No annealing or sharpening
schedules were used.

4.0.1 Standard XOR

The purpose of this simulation was to investigate whether GRAIN could be
trained to solve a problem requiring hidden units. We performed 25 learning
simulations with different random starting weights. The network consisted of
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three layers (2 input units, four hidden units, I output unit) with connections
only between adjacent layers. Within each layer the units were interconnected
with self connections fixed to zero. Initial weights where sampled from a (-
1,I) uniform distribution. Learning was done in epoch mode with 10 settling
restarts per pattern. Each settling consisted of 100 initial cycles of asynchronous
activation update 4 where statistics were not collected, and 100 more cycles
where statistics were collected. Decays were set at 0.1, lambdas at 0.1, and the
Gaussian noise standard deviations were set at 1.0 for each unit. The stepsize
constant for weight adjustment was set at 0.25. A 0.01 weight decay constant
was also applied after each learning epoch. The median number of learning
epochs until the information gain error measure was smaller than 0.04 was 26.
This is a very strict learning criterion s . We then turned the network to (-I , +1)
Boltzmann mode by setting the activations to I if the net input combined with
noise was greater than 1 or to -1 otherwise. In Boltzmann mode the median
number of epochs was 65. The difference was statistically significant (Willcoxon
p < 0.001). We have tried r, number of variations in the parameters and in all
cases using graded activations was benefitial to speed up learning. The difference
was less striking when less stringent learning criterion were used.

4.0.2 Translation problem

The purpose of the simulation was to investigate whether GRAIN can learn
probabilistic mappings using distributed representations. The inspiration for
this simulation was a problem that arises when training networks with dis-
tributed representations to do translations from one language to another. In
those cases where a word has two or more acceptable tranrlations, backprop-
agation converges to the expected values of each teacher unit, producing un-
acceptable blends of distributed representations. In our simulation "words"
were encoded as random binary patterns distributed amongst 8 "English" and
8 "Spanish" units. There were 24 additional hidden units and all 24+8+8 units
were fully interconnected. Sometimes Spanish units were clamped to get a cor-
rect translation in the English module, and sometimes the English units were
clamped to get a translation in the Spanish module (see Table 1). Initial weights
were sampled from a (-1,1) uniform distribution. Each settling consisted of 500
initial cycles of synchronous activation update 6 where statistics were not col-
lected, and 200 more cycles where statistics were collected. Decays were set
at 0.1, lambdas at 0.1, and the Gaussian noise standard deviations were set at
1.0 for each unit. The stepsize constant for weight adjustment was set at 0.01
for the first 200 epochs, 0.005 the next 200 epochs and 0.001 for the last 200
epochs. Learning was done in epoch mode with 10 settling restarts per pat-

4In asynchronous mode one randomly chosen unit is updated at a time. A cycle is defined
as performing as many random update* as the number of units in the network.

5For an explanation of the learning citerion se the appendix.
61n synchronous mode a the units in the network ae updated at the same time.
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tern.The results with GRAIN after 600 learning epochs are in Table I which
shows that a good approximation to the desired probabilities was obtained.
Most importantly, for the ambiguous words, where more than one translation
is possible, the network was near always in one of the correct alternatives and
did not generate unacceptable blends. In principle this problem is also solvable
in Boltzmann mode but we have not examined this came.

Input Translation
house casa 1.000 [0.998]
_ ome _casa 1.000 (0.796]

tomorrow manana 1.000 [0.898]
later mafana 1.000 10.698]
olive aceituno 0.500 [0.399 oliva 0 0.595T

be set 0.500 [0.700] estar 0.500 [0.298]
casa house 0.500 (0.367] home 0.500 [0.5821

mafiana tomorrow 0.500 [0.499) ] ater 0.500 [0.398)
aceituna olive 1.000 [0.992]

oliva olive 1.000 [0.999]
ser be 1.000 [0.900]

estar be 1.000 [0.899]

Table 1: Translation problem: Column one shows the input pattern and columns
2 and 3 the possible translations. The two numbers for each translation rep-
resent the desired probability and, in brackets, the obtained probability of the
translations after 600 learning epochs. A pattern was considered correct if each
output unit activation was within a 0.4 range of the desired value ( -0.9 or +0.9).

4.0.3 Learning independent continuous probability distributions

This problem cannot be learned with backpropagation networks or with Boltz-
mann machines. The GRAIN network consisted of 5 output units connected
to 10 fully interconnected hidden units. Self connections were allowed. Initial
weights where sampled from a (-1,1) uniform distribution. Each output unit was
trained to reproduce a continuous probability distribution according to Table 2.
Learning was done in epoch mode with 10 settling restarts per pattern. Each
settling consisted of 20 initial cycles of asynchronous activation update where
statistics were not collected, and 500 more cycles where statistics were collected.
Decays were set at 0.1, lambdas at 0.1, and the Gaussian noise standard devia-
tions were set at 1.5 for each unit. The stepsize constant for weight adjustment
was set at 0.005.

Figure I shows 10,000 activation cycles of the 5 output units after 1000
learning epochs. Figure 2 shows the probability density functions of the first
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Ouput unit Distribution Expected Value
1 Binomial 0
2 Constant 0
3 Uniform 0
4 Constant -0.5
5 Binomial -0.5

Table 2: Desired probability distributions for each of the 5 output units

three and the last two output units throughout earning. It can be seen that
the output distributions successfully approximate the desired distributions given
the constraints imposed by the injected noise. The pairwise correlations of the
output unit activations after training were zero to the third decimal place.

4.1 Learning continuous probability distributions governed
by XOR

This is a problem that cannot be learned with Boltzmann machines or back-
propagation networks and that necessitates hidden unit./i re were 2 input
units, 1 output unit, and 10 hidden units. Initial weights be~e sampled fro
a (-1,1) uniform distribution. The network was fully inter m'nected, with self
connections allowed. The probability distribution to be learned by the output
unit depended on the input conditions as indicated in Table 3.

Input Units Distribution Expected Value
-1 -1 Constant 0
-1 1 Binomial 0
1 -1 Binomial 0
11 I Constant 0

Table 3: Desired output probability distributions as a function of the input
patterns.

Learning was done in epoch mode with 4 settling restarts per pattern. Each
settling consisted of 20 initial cycles of asynchronous activation update where
statistics were not collected, and 500 more cycles where statistics were collected.
Decays were set at 0.1, lambdas at 0.1, and the Gaussian noise standard devia-
tions were set at 1.0 for each unit. The stepsize constant for weight adjustment
was set at 0.001. Figure 3 shows the results after 600 learning epochs. It can
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be seen that the probability distribution of the activations conditional on the
four input patterns successfully approximates the desired distributions given the
constraints imposed by noise.

5 CONCLUSION

Backpropagation networks can only learn central tendencies of independent out-
put units, not probability distributions over patterns of output units. Stochas-
tic Boltzmann machines can in principle learn probability distributions but are
limited to discrete binary values. GRAIN extends the scope of previous connec-
tionist learning algorithms and encompasses a large category of them under the
same theoretical framework. Our simulations show that GRAIN networks can
be successfully trained to approximate probability distributions conditional on
the input patterns.
We hope this work contributes to a renewal of interest in going beyond the
learning of central tendencies to the modeling of distributions. Considerable
works needs to be done. Analytically, it remains to be shown rather than just
conjectured that GRAIN is maximizing a function of the form proposed in equa-
tion 13. Secondly, it would be helpful to link minimization of the contrastive
function with minimization of other error functions. The contrastive theorem
guarantees that when the contrastive function is zero we have learned to match
the envirironmentally specified probability distributions exactly. Unfortunately
the theorem does not say whether the relationship between the contrastive func-
tion and error functions such as information gain is monotonic. In practice we
have found this to be the case, with both information gain and the contrastive
function decreasing as learning progresses but we have not yet established this
link analytically.

12



6 Appendix: Implementational details
- We have found it beneficial when using the update function of equations 2 and
3 to clip the activations to values smaller than mat and bigger than min. This
is done to avoid spurious oscillations that occur when the activations are close
to extreme values when approximating a continuous time process with discrete
time steps. In our simulations we did not let the activations grow bigger than
mar - lambda * decay or smaller than main + lambda * decay.

- We have also found it beneficial to use non-extreme teacher values. For
instance for the XOR and translation problems the teachers were set to either
-0.9 or 0.9 instead of-1.0 or 1.0. For Boltzmann mode the teachers were (-1,
+1).

- As discussed in Movellan 1990, gradient descent calls for the self connections
to be changed at half the rate of the other . Our simulations followedthis rule.- The random restarts for each settli g wher one by reinitializing the acti-

vations to uniformly distributed randowithin the allowable activation
range.

- The error criterion to stop the training process is based on the following
information gain fucinv

E fdee"r d h - .i, d (18)

Were P stands for probability density. This measure is the continuous version
of the discrete information gain function used in discrete Boltzmann machines.
In practice, we approximate the integral by defining a region sourrounding each
of the desired distributed states and assessing the actual probabilility that the
activations fall within that region. For the XOR a unitwise tolerance of 0.4 was
used. With targets set at -0.9 the activation of the output unit had to be above
0.5 for +0.9 teachers and bellow -0.5 for -0.9 teachers to fall within the target
region. For the XOR simulation, a value of information gain of 0.04 corresponds
quite closely to an average probability of 0.99 that the network is in the target
state accross the 10 restarts x 100 cycles x 4 patterns.
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Figure 1: Output unit activations after 300 learning epochs. Each r ,w
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Figure 2: Probability distribution of the first three output units (top line); and the last
two output units (bottom line) throughout learning.
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